2006 Vol. 8, No. 1 83–86

$Co_2(CO)_8$ -Catalyzed Intramolecular Hetero-Pauson—Khand Reaction of Alkynecarbodiimide: Synthesis of (\pm) -Physostigmine

Chisato Mukai,*,† Tatsunori Yoshida,† Mao Sorimachi,† and Akira Odani‡

Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan, and Research Center for Materials Science, Graduate School of Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

cmukai@kenroku.kanazawa-u.ac.jp

Received October 21, 2005

ABSTRACT

esermethole: R = Me physostigmine: R = C(O)NHMe

Herein we describe a novel $Co_2(CO)_8$ -catalyzed intramolecular aza-Pauson-Khand-type reaction of alkynecarbodiimide derivatives affords pyrrolo-[2,3-b]indol-2-one ring systems in reasonable yields. This is the first reported $Co_2(CO)_8$ successfully applied in the hetero-Pauson-Khand reaction. Significantly, the transformation of one of our pyrrolo[2,3-b]indol-2-one derivatives into the indole alkaloid, (\pm)-physostigmine, was completed in a highly stereoselective manner.

The intramolecular Pauson—Khand reaction¹ is well recognized as one of the most straightforward and powerful methodologies for the construction of bicyclic carbon frameworks. This intriguing reaction is a formal metalmediated (or catalyzed) [2 + 2 + 1]-cycloaddition reaction

of the alkyne π -bond, the alkene π -bond, and carbon monoxide. The reaction would generally be referred to as the "hetero-Pauson—Khand reaction" if more than one carbon atom of the newly generated cyclopentenone framework was replaced by an oxygen atom and/or nitrogen functionalities. Thus, the hetero-Pauson—Khand reaction would be realized for the oxa(aza)alkyne and/or an oxa(aza)alkene counterpart that could take part in the [2+2+1]-cycloaddition reaction. The first hetero-Pauson—Khand-type reactions were independently achieved by Buchwald's² and Crowe's groups³ in 1996, via the intramolecular titanium-mediated [2+2+1]-cycloaddition of δ -unsaturated ketones and aldehydes (between the alkene π -bond and the oxa-alkene π -bond) with carbon monoxide, which resulted in the formation of bicyclic

[†] Kanazawa University.

[‡] Nagoya University.

⁽¹⁾ For leading reviews, see: (a) Pauson, P. L. In Organometallics in Organic Synthesis. Aspects of a Modern Interdisciplinary Field; de Meijere, A., tom Dieck, H., Eds.; Springer: Berlin, 1988; pp 233–246. (b) Schore, N. E. Chem. Rev. 1988, 88, 1081–1119. (c) Schore, N. E. Org. React. 1991, 40, 1–90. (d) Schore, N. E. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon: Oxford, 1991; Vol. 5, pp 1037–1064. (e) Schore, N. E. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Elsevier: New York, 1995; Vol. 12, pp 703–739. (f) Frühauf, H.-W. Chem. Rev. 1997, 97, 523–596. (g) Jeong, N. In Transition Metals in Organic Synthesis; Beller, H., Bolm, C., Eds; Wiley-VCH: Weinheim, 1998; Vol. 1, pp 560–577. (h) Geis, O.; Schmalz, H.-G. Angew. Chem., Int. Ed. 1998, 37, 911–914. (i) Chung, Y. K. Coord. Chem. Rev. 1999, 188, 297–341. (j) Brummond, K. M.; Kent, J. L. Tetrahedron 2000, 56, 3263–3283. (k) Boñaga, L. V. R.; Krafft, M. E. Tetrahedron 2004, 60, 9795–9833.

^{(2) (}a) Kablaoui, N. M.; Hicks, F. A.; Buchwald, S. L. *J. Am. Chem. Soc.* **1996**, *118*, 5818–5819. (b) Kablaoui, N. M.; Hicks, F. A.; Buchwald, S. L. *J. Am. Chem. Soc.* **1997**, *119*, 4424–4431.

⁽³⁾ Crowe, W. E.; Vu, A. T. J. Am. Chem. Soc. 1996, 118, 1557-1558.

γ-lactone species (oxa-Pauson-Khand-type reaction). Several years later, Chatani and Murai⁴ discovered that Ru₃-(CO)₁₂ could efficiently catalyze not only the intramolecular oxa-Pauson-Khand reaction but also the aza-Pauson-Khand reaction to provide α,β -unsaturated γ -butenolides^{4a} from the ynealdehydes (between alkyne π -bond and oxa-alkene π -bond), and the α,β -unsaturated lactams^{4b} from the yneimines (between alkyne π -bond and aza-alkene π -bond), respectively. To the best of our knowledge, this Ru₃(CO)₁₂catalyzed reaction is the first example of the metal-catalyzed hetero-Pauson-Khand reaction. Ru₃(CO)₁₂ was also found by Kang⁵ to be effective for the intramolecular oxa-Pauson-Khand-type reaction of the δ -allenyl carbonyl congeners (instead of the ynealdehydes) to afford the corresponding α-methylene-γ-butyrolactones. Kang's group⁵ also reported that the δ -allenyl moiety participated in the intramolecular aza-Pauson—Khand-type reaction with N-benzoylhydrazones (between allene π -bond and aza-alkene π -bond). A similar transformation of the δ -allenylcarbonyl compounds into the α -methylene- γ -butyrolactones under the Mo(CO)₆-mediated conditions was developed by Yu's group.⁶ In addition, Saito⁷ recently reported a new type of aza-Pauson-Khand reaction, involving the cyclocarbonylation of the alkyne carbodiimide substrates 1 (between alkyne π -bond and carbodiimide π -bond) to provide the diazabicyclic compounds 2 under the Mo(CO)₆-mediated conditions (stoichiometric version) (Scheme 1).

Our recent interest⁸ in the development of rhodium-catalyzed intramolecular Pauson—Khand-type reactions between the alkyne π -bond and the allene π -bond (instead of the olefin π -bond) led to an easy preparation of the bicyclo-[4.3.0]nonadienone as well as bicyclo[5.3.0]decadienone frameworks. We have now become very interested in the *metal-catalyzed* cyclocarbonylation between the alkyne π -bond and the diaza-allene π -bond (carbodiimide functionality) because the carbodiimide group might be regarded as

an isoelectronic alternative to the allenyl moiety in the Pauson-Khand-type reaction (aza-Pauson-Khand-type reaction), although Saito⁷ already developed the stoichiometric procedure using Mo(CO)₆. Thus, we focused our efforts on the development of a new metal-catalyzed intramolecular aza-Pauson-Khand-type reaction of the N-[2-(1-alkynyl)phenyl]-N'-phenylcarbodiimide derivatives. This letter describes the preliminary results of (i) the novel Co₂(CO)₈catalyzed intramolecular aza-Pauson-Khand-type reaction of N-[2-(1-alkynyl)phenyl]-N'-phenylcarbodiimide derivatives to obtain the pyrrolo[2,3-b]indol-2-one framework in onestep and (ii) a short and reasonably rapid synthesis of (±)-physostigmine¹⁰ based on the thus-developed catalytic aza-Pauson-Khand-type product. We note, in advance, that this is the first example of the Co₂(CO)₈-catalyzed aza-[2 + 2 + 1] cycloaddition process ever reported.

The required alkynecarbodiimide substrates **5** for the cyclocarbonylation were prepared in a straightforward manner from the known 2-alkynylaniline derivatives **3**. Treatment of **3** with triphosgene and Et₃N was followed by exposure to primary amines¹¹ afforded the urea derivatives **4** in high yield. Exposure of **4** to carbon tetrabromide and triphenylphosphine¹² effected dehydration to provide the carbodiimides **5** as shown in Scheme 2.

Our initial evaluation of the metal-catalyzed cyclocarbonylation of an alkynecarbodiimide was carried out using compound **5a** (Table 1). Chatani and Murai's conditions (catalytic amounts of Ru₃(CO)₁₂ in toluene at 120 °C under 10 atm of CO)⁴ were first applied to compound **5a** to afford the desired pyrrolo[2,3-*b*]indol-2-one **6a** in 35% yield along with the urea **4a** in 27% yield¹³ (entry 1).

[RhCl(CO)₂]₂,⁸ a suitable catalyst for the ring-closing reaction between the alkyne and allene groups, gave **6a** in a

84 Org. Lett., Vol. 8, No. 1, 2006

^{(4) (}a) Chatani, N.; Morimoto, T.; Fukumoto, Y.; Murai, S. *J. Am. Chem. Soc.* **1998**, *120*, 5335–5336. (b) Chatani, N.; Motimoto, T.; Kamitani, A.; Fukumoto, Y.; Mutai, S. *J. Organomet. Chem.* **1999**, *579*, 177–181.

⁽⁵⁾ Kang, S.-K.; Kim, K.-J.; Hong, Y.-T. Angew. Chem., Int. Ed. 2002, 41, 1584–1586.

⁽⁶⁾ Yu, C.-M.; Hong, Y.-T.; Lee, J.-H. J. Org. Chem. 2004, 69, 8506–8509.

⁽⁷⁾ Saito, T.; Shiotani, M.; Otani, T.; Hasaba, S. *Heterocycles* **2003**, *60*, 1045–1048.

^{(8) (}a) Mukai, C.; Nomura, I.; Yamanishi, K.; Hanaoka, M. *Org. Lett.* **2002**, *4*, 1755–1758. (b) Mukai, C.; Nomura, I.; Kitagaki, S. *J. Org. Chem.* **2003**, *68*, 1376–1385. (c) Mukai, C.; Inagaki, F.; Yoshida, T.; Kitagaki, S. *Tetrahedron Lett.* **2004**, *45*, 4117–4121. (d) Mukai, C.; Inagaki, F.; Yoshida, T.; Yoshitani, K.; Hara, Y.; Kitagaki, S. *J. Org. Chem.* **2005**, *70*, 7159–7171.

⁽⁹⁾ The thermal transformation of the *N*-[2-(1-alkynyl)phenyl]-*N*'-phenylcarbodiimides into the 6*H*-indolo[2,3-*b*]qinolines via the biradical intermediates and its related reactions were reported; see: (a) Schmittel, M.; Steffen, J.-P.; Engels, B.; Lennartz, C.; Hanrath, M. *Angew. Chem., Int. Ed.* 1998, *37*, 2371–2373. (b) Shi, C.; Zhang, Q.; Wang, K. K. *J. Org. Chem.* 1999, *64*, 925–932. (c) Zhang, Q.; Shi, C.; Zhang, H.-R.; Wang, K. K. *J. Org. Chem.* 2000, *65*, 7977–7983. (d) Schmittel, M.; Rodríguez, D.; Steffen, J.-P. *Angew. Chem., Int. Ed.* 2000, *39*, 2152–2155. (e) Lu, X.; Petersen, J. L.; Wang, K. K. *J. Org. Chem.* 2002, *67*, 7412–5415. (f) Lu, X.; Petersen, J. L.; Wang, K. K. *J. Org. Chem.* 2002, *67*, 7797–7801. (g) Li, H.; Petersen, J. L.; Wang, K. K. *J. Org. Chem.* 2003, *68*, 5512–5518. (h) Li, H.; Yang, H.; Petersen, J. L.; Wang, K. K. *J. Org. Chem.* 2004, *69*, 4500–4508.,

Table 1. Aza-Pauson-Khand Reaction of Carbodiimide 5a

TMS
$$N = -N$$

$$Ar = \rho - MeOC_6H_4$$

$$Ar = 6a$$

$$Ar = 6a$$

entry	metal	solvent	temp.	time	atmosphere	6a (%)	4a (%)
1	Ru ₃ (CO) ₁₂ (5 mol %)	toluene	120 °C	1.5 h	CO (10 atm)	35	27
2	[RhCl(CO) ₂] ₂ (10 mol %)	DCE	80 °C	12 h	CO (1 atm)	8	-
3	Co ₂ (CO) ₈ (1.2 equiv)	MeCN	70 °C	1 h	N_2	42	14
4	Co ₂ (CO) ₈ ^a (1.2 equiv)	THF	70 °C	1 h	N_2	36	-
5	Co ₂ (CO) ₈ ^b (1.2 equiv)	CH ₂ Cl ₂	-78 °C°	4.5 h	O_2	66	20
6	Co ₂ (CO) ₈ ^d (10 mol %)	C ₆ H ₆	70 °C	1 h	CO (1 atm)	69	7
7	Mo(CO) ₆ e (1.2 equiv)	toluene	80 °C	10 min	N_2	76	7

 a DMSO (6.0 equiv) was used. b TMANO (4.0 equiv) was used. c Reaction temperature was warmed to rt. d TMTU (60 mol %) was used. e DMSO (10 equiv) was used.

low yield (entry 2). $\text{Co}_2(\text{CO})_8^{14}$ consistently provided **6a** as the major product (entries 3–6). In particular, **6a** was obtained in 69% yield when **5a** was exposed to 10 mol % $\text{Co}_2(\text{CO})_8$ and tetramethylthiourea (TMTU)^{14e} in benzene at 70 °C under an atmosphere of CO (entry 6). A control experiment using a combination of $\text{Mo}(\text{CO})_6$ and DMSO at 80 °C in toluene^{7,15} produced **6a** in 76% yield together with a small amount of **4a**¹³ (entry 7). Thus, a catalytic amount of $\text{Co}_2(\text{CO})_8$ was found to efficiently accelerate the intramo-

(11) (a) Majer, P.; Randad, R. S. J. Org. Chem. 1994, 59, 1937–1938.
(b) Weiberth, F. J. Tetrahedron Lett. 1999, 40, 2895–2898.

(12) Nishikawa, T.; Ohyabu, N.; Yamamoto, N.; Isobe, M. *Tetrahedron* **1999**, *55*, 4325–4340.

(13) The formation of the urea derivative **4** as a byproduct could tentatively be interpreted by hydrolysis with a small amount of water inevitably present in the reaction medium.

(14) (a) Hoye, T. R.; Suriano, J. A. J. Org. Chem. 1993, 58, 1659–1660. (b) Jiang, B.; Xu, M. Angew. Chem., Int. Ed. 2004, 43, 2543–2546. (c) Chung, Y. K.; Lee, B. Y. Organometallics 1993, 12, 220–223. (d) Jeong, N.; Chung, Y. K.; Lee, B. Y.; Lee, S. H.; Yoo, S.-E. Synlett 1991, 204–206. (e) Tang, Y.; Deng, L.; Zhang, Y.; Dong, G.; Chen, J.; Yang, Z. Org. Lett. 2005, 7, 593–595.

(15) (a) Jeong, N.; Lee, S. J. *Tetrahedron Lett.* **1993**, *34*, 4027–4030. (b) Brummond, K. M.; Lu, J.; Petersen, J. *J. Am. Chem. Soc.* **2000**, *122*, 4915–4920. (c) Brummond, K. M.; Kerekes, A. D.; Wan, H. *J. Org. Chem.* **2002**, *67*, 5156–5163. (d) Yu, C.-M.; Hong, Y.-T.; Lee, J.-H. *J. Org. Chem.* **2004**, *69*, 8506–8509.

Table 2. Aza-Pauson-Khand Reaction of Carbodiimide 5b-k with $Co_2(CO)_8^a$

	_	1	52	R ³	C (O()	# (O()
entry	5	R ¹	R ²	H°	6 (%)	4 (%)
1	5b	Н	TMS	p -PhOC $_6$ H $_4$	6b (57)	4b (6)
2	5c	Н	TMS	p-MeOC ₆ H ₄ CH ₂	6c (37) ^b	4c (6)
3	5d	Н	TMS	Me	6d (41) ^b	4d (15)
4	5e	Н	Pr	p -MeOC $_6$ H $_4$	6e (66)	4e (10)
5	5f	Н (CH ₂) ₂ CHCMe	₂ p-MeOC ₆ H ₄	6f (44)	4f (13)
6	5g	Н	(CH ₂) ₂ OTBS	p -MeOC $_6$ H $_4$	6g (48)	4g (8)
7	5h	Н	CH ₂ OTHP	p -MeOC $_6$ H $_4$	6h (5)	4h (trace)
8	5i	Me	TMS	p -MeOC $_6$ H $_4$	6i (54)	4i (19)
9	5j	MeO	TMS	p-MeOC ₆ H ₄	6j (54)	4j (18)
10	5k	CI	TMS	p -MeOC $_6$ H $_4$	6k (52)	4k (7)

 a A mixture of carbodiimide **5**, Co₂(CO)₈ (10 mol %), and TMTU (60 mol %) in benzene (0.1 M) was heated at 70 °C under an atmosphere of CO. b Co₂(CO)₈ (20 mol %) and TMTU (120 mol %) were used.

lecular ring-closing step of $\mathbf{5a}$ to furnish the pyrrolo[2,3-b]-indol-2-one framework $\mathbf{6a}$.

Org. Lett., Vol. 8, No. 1, 2006

⁽¹⁰⁾ For recent total synthesis of physostigmine, see: (a) Node, M.; Hao, X.; Nishide, K.; Fuji, K. Chem. Pharm. Bull. 1996, 44, 715–719. (b) Matsuura, T.; Overman, L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120, 6500–6503. (c) Kawahara, M.; Nishida, A.; Nakagawa, M. Org. Lett. 2000, 2, 675–678. (d) ElAzab, A, S.; Taniguchi, T.; Ogasawara, K. Org. Lett. 2000, 2, 2757–2759. (e) Tanaka, K.; Taniguchi, T.; Ogasawara, K. Tetrahedron Lett. 2001, 42, 1049–1052. (f) M.-Rios, M. S.; S.-Sanchez, N. F.; J.-Nathan, P. J. Nat. Prod. 2002, 65, 136–141. (g) Mekhael, M. K. G.; Heimgartner, H. Helv. Chim. Acta 2003, 86, 2805–2813. (h) Rage, P. D.; Johnson, F. J. Org. Chem. 2003, 68, 6133–6139. (i) Haung, A.; Kodanko, J. J.; Overman, L. E. J. Am. Chem. Soc. 2004, 126, 14043–14053. (j) Santos, P. F.; Srinivasan, N.; Almeida, P. S.; Lobo, A. M.; Prabhakar, S. Tetrahedron 2005, 61, 9147–9156.

We next investigated the scope of this ring-closing reaction using various substrates **5b-k** under the Co₂(CO)₈-catalyzed conditions (Table 2). The carbodiimides 5b,i-k, having the phenyl substitutent on the nitrogen atom (R³) as well as the TMS group at the alkyne terminus (R²), consistently produced the corresponding pyrrolo[2,3-b]indol-2-one skeleta **6b,i-k** in reasonable yield (more than 50%) irrespective of the substituent (R^1) on the benzene ring (entries 1,8-10). The carbon appendages at the triple bond terminus, such as a propyl (entry 4), aklenyl (entry 5), and siloxyethyl (entry 6) were stable under the CO₂(CO)₈-catalyzed conditions and the corresponding cyclocarbonylated products 5e-g were obtained in good yields. However, the benzyl and alkyl substituents on the nitrogen atom (R³) 5c,d provided the cyclized products **6c,d** in slightly lower yields (entries 2,3). The propargyl alcohol derivative **5h** was shown to be a poor substrate for this catalytic ring-closing reaction (entry 7).

Our application of the newly developed catalytic aza-Pauson-Khand-type reaction for the synthesis of natural products is the next subject. According to the $Co_2(CO)_8$ -catalyzed cyclocarbonylation conditions, the pyrrolo[2,3-b]-indol-2-one **9** was prepared in 55% yield^{16,17} yield from the carbodiimide **8**. Reductive methylation of **9** with NaCNBH₃ in the presence of aq HCHO and AcOH effected the consecutive reduction, hydroxymethylation, and N-methylation to produce **10**¹⁹ in 79% yield as a single stereoisomer. Removal of a TMS group from **10** with TBAF gave **11** in 96% yield, conversion of which into (\pm) -esermethole $(13)^{10,21}$

was achieved by the conventional procedures via the iodo derivative 12 in high yields. The present synthesis of 13 amounts to the synthesis of (\pm) -physostigmine (14), 10,21 since the former has already been converted into the latter (Scheme 3).

In summary, we have developed the novel $\text{Co}_2(\text{CO})_8$ -catalyzed aza-Pauson—Khand-type reaction of alkynecarbo-diimide derivatives to give a range of pyrrolo[2,3-b]indol-2-one skeleta. This is the first demonstration of the use of $\text{Co}_2(\text{CO})_8$ in the hetero-Pauson—Khand reaction. In addition, a new synthesis of (\pm) -physostigmine, involving a one-step construction of the core framework, followed by a small number of chemical modifications, has been achieved.

Acknowledgment. This work was supported in part by a Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, for which we are thankful.

Supporting Information Available: General procedures for ring-closing reaction and preparation of ureas and carbodiimides, and characterization data for compounds **4a**–**k**, **5a**–**k**, **6a**–**k**, and **7**–**13**. ¹H and ¹³C spectra for compounds **4b**,**d**, **5a**–**k**, **8**, **12**, and **13**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL052562Z

Org. Lett., Vol. 8, No. 1, 2006

⁽¹⁶⁾ Co₂(CO)₈ (20 mol %) was used.

⁽¹⁷⁾ A stoichiomeric amount of Mo(CO)₆ (1.2 equiv) and DMSO (10 equiv) afforded the desired **9** in 78% yield along with the urea **7** in 8% yield.

⁽¹⁸⁾ Coumpound 8 was prepared from 3j via 7.

⁽¹⁹⁾ A full mechanistic discussion is premature at this point, but the one-step transformation of **9** into **10** might be rationalized in terms of the initial attack of the hydride species at the C_3 -position (1,4-reduction) of **9** resulting in the formation of the indole intermediate, which subsequently reacted with HCHO at the C_{3a} -position to give the corresponding indolenine derivative. The formed imine moiety (N_8-C_{8a}) would be susceptible to the hydride reduction, followed by *N*-methylation to produce **10**.

⁽²⁰⁾ The relative stereochemistry of 10 was determined by an NOE experiment.

⁽²¹⁾ Yu, Q.-S.; Brossi, A. Heterocycles 1988, 27, 745-750.